sábado, 12 de septiembre de 2015

Ácidos y Bases

Los ácidos y las bases se caracterizan por:

Ácidos
Bases
Tienen sabor agrio (limón, vinagre, etc).Tiene sabor cáustico o amargo (a lejía)
En disolución acuosa enrojecen la tintura o papel de tornasolEn disolución acuosa azulean el papel o tintura de tornasol
Decoloran la fenolftaleína enrojecida por las basesEnrojecen la disolución alcohólica de la fenolftaleína
Producen efervescencia con el carbonato de calcio (mármol)Producen una sensación untuosa al tacto
Reaccionan con algunos metales (como el cinc, hierro,…), desprendiendo hidrógenoPrecipitan sustancias disueltas por ácidos
Neutralizan la acción de las basesNeutralizan la acción de los ácidos
En disolución acuosa dejan pasar la corriente eléctrica, experimentando ellos, al mismo tiempo una descomposición químicaEn disolución acuosa dejan pasar la corriente eléctrica, experimentando ellas, al mismo tiempo, una descomposición química
Concentrados destruyen los tejidos biológicos vivos (son corrosivos para la piel)Suaves al tacto pero corrosivos con la piel (destruyen los tejidos vivos)
Enrojecen ciertos colorantes vegetalesDan color azul a ciertos colorantes vegetales
Disuelven sustanciasDisuelven grasas y el azufre
Pierden sus propiedades al reaccionar con basesPierden sus propiedades al reaccionar con ácidos
Se usan en la fabricación de jabones a partir de grasas y aceites

Tanto ácidos como bases se encuentran en gran cantidad de productos usados en la vida cotidiana, para la industria y la higiene, así como en frutas y otros alimentos, mientras que el exceso o defecto de sus cantidades relativas en nuestro organismo se traduce en problemas de salud.





Fusión y Fisión nuclear

Se denominan fisión y fusión nuclear a dos procesos nucleares exoenergéticos con importantes aplicaciones. Ambos procesos producen cantidades extraordinariamente elevadas de energía, y ambos procesos son básicos en la concepción de los reactores nucleares utilizados en la producción de energía eléctrica.

           



La fisión es un fenómeno que separa a los núcleos mas pesados (uranio y plutonio principalmente). 








La fusión, sin embargo, es un proceso que tiene lugar de forma natural en las estrellas. Por eso brillan (emiten fotones) y además emiten otras partículas de interés para la astrofísica.

Disoluciones Químicas

Las disoluciones son mezclas homogéneas de dos o más sustancias. El soluto es el componente que se encuentra en distinto o igual estado físico que la disolución; y el disolvente es una sustancia que está en igual estado físico que la disolución. Cuando un soluto entra en contacto con un disolvente este se disocia formando una disolución.




El soluto puede ser un gas, un líquido o un sólido, y eldisolvente puede ser también un gas, un líquido o un sólido. El agua con gas es un ejemplo de un gas (dióxido de carbono) disuelto en un líquido (agua). Las mezclas de gases, como ocurre en la atmósfera, son disoluciones. 

Las disoluciones verdaderas se diferencian de las disoluciones coloidales y de las suspensiones en que las partículas del soluto son de tamaño molecular, y se encuentran dispersas entre las moléculas del disolvente. Observadas a través del microscopio, las disoluciones aparecen homogéneas y el soluto no puede separarse por filtración. Las sales, ácidos y bases se ionizan al disolverse en agua. Algunos metales son solubles en otros en estado líquido y solidifican manteniendo la mezcla de átomos. Si en dicha mezcla los dos metales pueden solidificar en cualquier proporción, se trata de una disolución sólida llamada aleación.

Las disoluciones se caracterizan por tener una fase homogénea, es decir, tiene las mismas características en todos sus puntos, o lo que es lo mismo: el aspecto, sabor, color, etc. son siempre los mismos. Si una disolución está turbia ya no es una disolución; y existen disoluciones de todos los estados físicos en todos los estados físicos en todos los estados físicos.



Ernest Rutherford y el experimento de la lámina de oro

En 1910 un físico neozelandés. Ernest Rutherford, que estudio con Thomson en la Universidad de Cambridge, utilizó partículas alfa para demostrar la estructura de los átomos. Junto con su colega Hans Geiger y un estudiante de licenciatura llamado Ernest Marsden. Rutherford efectuó una serie de experimentos utilizando láminas muy delgadas de oro y de otros metales, como blanco de partículas a provenientes de una fuente radiactiva. Ellos observaron que la mayoría de las partículas atravesaban la lámina sin desviarse, o bien con una ligera desviación. De vez en cuando, algunas partículas alfa eran dispersadas (o desviadas) de su trayectoria con un gran ángulo. En algunos casos, las partículas alfa regresaban por la misma trayectoria hacia la fuente radiactiva. Éste fue el descubrimiento más sorprendente ya que. Según el modelo de Thomson, la carga positiva del átomo era tan difusa que se esperaría que las partículas a atravesaran las láminas sin desviarse o con una desviación mínima, El comentario de Rutherford sobre este descubrimiento fue el siguiente:

 Resultó tan increíble como si usted hubiera lanzado una bala de 15 pulgadas hacia un trozo de papel de seda y la bala se hubiera regresado hacia usted. 

Tiempo después, Rutherford pudo explicar los resultados del experimento de la dispersión de partículas a utilizando un nuevo modelo de átomo. De acuerdo con Rutherford, la mayor parte de los átomos debe ser espacio vacío. Esto explica por qué la mayoría de las partículas a atravesaron la lámina de oro sufriendo poca o ninguna desviación. Rutherford propuso que las cargas positivas de los átomos estaban concentradas en un denso conglomerado central dentro del átomo, que llamó núcleo. Cuando una partícula “A” pasaba cerca del núcleo en el experimento, actuaba sobre ella una gran fuerza de repulsión, lo que originaba una gran desviación. Más aún, cuando una partícula “A” incidía directamente sobre el núcleo, experimentaba una repulsión tan grande que su trayectoria se invertía por completo. 


Diseño experimental de Rutherford para medir la dispersión de las partículas alfa causada por una lámina de oro. La mayoría de las partículas alfa atraviesan la lámina de oro con poca o ninguna desviación. Algunas se desvían con un ángulo grande ocasionalmente alguna partícula invierte su trayectoria. Las partículas del núcleo que tienen carga positiva reciben el nombre de protones. En otros experimentos se encontró que los protones tienen la misma cantidad de carga que los electrones y que su masa es de 1.67262 × 10-24 g. Aproximadamente 1840 veces la masa de las partículas con carga negativa, los electrones. Hasta este punto, los científicos visualizaban el átomo de la siguiente manera: la masa del núcleo constituye la mayor parte de la masa total del átomo, pero el núcleo ocupa solamente 1/1013 del volumen total del átomo.

 Las dimensiones atómicas (y moleculares) se expresarán aquí, de acuerdo con el SI (Sistema Internacional), con una unidad llamada picómetro (pm), donde: 1 pm = 1 × 10-12 m. El radio de un átomo es aproximadamente de 100 pm, mientras que el radio del núcleo atómico es solamente de 0.005 pm. 

Se puede apreciar la diferencia relativa entre el tamaño de un átomo y su núcleo imaginando que si un átomo tuviera el tamaño del estadio Astrodomo de Houston, el volumen de su núcleo sería comparable con el de una pequeña canica. Mientras que los protones están confinados en el núcleo del átomo, se considera que los electrones están esparcidos alrededor del núcleo y a cierta distancia de él. El concepto de radio atómico tiene utilidad experimental, pero no debe suponerse que los átomos tienen dimensiones o superficies bien definidas. Más adelante se aprenderá que las regiones externas de los átomos son relativamente “difusas”.